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SUMMARY

Characterizing genetic variation in natural populations is vital to evolutionary biology; however, many non-

model species lack genomic resources. Here, we demonstrate that reference bias significantly affects pop-

ulation genomic analyses by mapping whole-genome sequence data from gray foxes (Urocyon cinereoar-

genteus) to a conspecific reference and two heterospecific canid genomes (dog and Arctic fox). Mapping

to the conspecific genome improved read pairing by ∼5% and detected 26%–32% more SNPs and 33%–

35% more singletons. Nucleotide diversity estimates increased by over 30%, FST increased from 0.189 to

0.197, and effective population size estimates were 30%–60% higher with the conspecific reference. Recom-

bination rates varied by up to 3-fold at chromosome ends with heterospecific references. Importantly, FST

outlier detection differed markedly, with heterospecific genomes identifying twice as many unique outlier

windows. These findings highlight the impact of reference genome choice and the importance of conspecific

genomic resources for accurate evolutionary inference.

INTRODUCTION

Accurately characterizing genetic variation is essential for under-

standing the evolutionary dynamics of populations and informing

management strategies for species of conservation concern.

The increasing accessibility of whole-genome sequencing

(WGS) data for non-model organisms has led to a proliferation

of studies employing WGS data that estimate genetic diversity,

assess population structure and connectivity, and identify adap-

tive genetic variation. Recent advancements in analytical tech-

niques for WGS data have enabled sophisticated analyses that

extend beyond classic population genetic diversity metrics to

characterize structural variation,1 infer demographic histories,2

and estimate population recombination rates.3 These develop-

ments provide deeper insights into the historical and contempo-

rary processes shaping genetic variation in natural populations.

However, the reliability of these inferences and cross-population

comparisons depends on the reference genome used. Refer-

ence genomes are essential for comparing individuals and pop-

ulations, but they do not capture the full spectrum of genetic

diversity. Population-level diversity is missed because a haploid

reference represents variation from only a single individual at

each site in the genome.

Reference bias arises because a single reference genome—

usually a haploid sequence from one individual—is used as the

coordinate system for mapping. This reference cannot fully

represent the genetic diversity of an entire species. As a result,

sequencing reads that closely match the reference tend to

map with higher quality and are retained, while dissimilar reads

with lower quality scores often map poorly and are discarded.

This can lead to mapping errors or missed variant calls, espe-

cially for true population-specific genetic variation. Thus, refer-

ence bias will result in missed or mis-called genotypes that will

impact estimates of genetic diversity and downstream analyses,

with the potential to distort conclusions about the population’s

evolutionary history. Reference bias, along with sequencing

depth, has been shown to influence downstream genetic ana-

lyses. For example, in simulated low-coverage (2–4×) genomes,

introducing a 2% reference divergence can cause estimates of θ
to increase by 0.14- to 0.18-fold.4 Similar effects were noted on

commonly used neutrality statistics: a small downward bias in

Tajima’s D, an upward bias in Fu and Li’s D, and a strong down-

ward bias in Fay and Wu’s H.4 Importantly, these shifts were still

observed even at moderate coverage (8×) and in empir-

ical data.4

It is often the case that researchers will map to a reference

genome from related species when a conspecific reference

genome is unavailable. For example, in modern dogs and

wolves, using a heterospecific (wolf) reference instead of a

conspecific (dog) reference led to a 10% difference in heterozy-

gosity estimates between individual dogs.5 In non-model spe-

cies like big cats, using a conspecific reference can alter both

heterozygosity (ranging from a 0.25-fold decrease to a 3.21-

fold increase) and demographic history inference.6 In fishes,
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reference bias has been associated with overestimated hetero-

zygosity, with local reference genomes reducing reference/

non-reference heterozygous calls by 0.13%–0.31% and non-

reference/non-reference calls by 0.05%–0.10%.7 Studies have

also shown that reference bias leads to inaccurate detection of

structural variation8 and distorted phylogenies,9 potentially

skewing conclusions about population history and genetic diver-

sity in fish species. Lastly, recent work on the impact of reference

bias in two species of conservation concern, the New Zealand

kiwi and the beluga whale, revealed alarming mismatches in

demography and inhibited the detection of long runs of

homozygosity.10

Despite the impact of reference bias on population genetic

inference, few studies have examined how it may affect the char-

acterization of demographic history and population recombina-

tion rates, which are increasingly popular targets of estimation.

The gray fox (Urocyon cinereoargenteus) provides a compelling

case study in this research. Gray foxes are widely distributed

across North America and, despite their phenotypic similarity, ge-

netic evidence suggests deep divergence between eastern and

western lineages.11 Previous gray fox genetic studies have relied

on a domestic dog (Canis lupus familiaris) reference genome,12

which poses challenges due to significant karyotypic differences

between the two species.13,14 In fact, despite most canid studies’

reliance on the domestic dog reference genome, the clade con-

tains a number of large karyotypic rearrangements; for example,

dogs have 38 pairs of autosomal chromosomes, gray foxes have

32, and the Arctic fox (Vulpes lagopus) has 23–24.

The domestic dog, gray fox, and Arctic fox represent distinct

evolutionary lineages within Canidae.15 The gray fox represents

the most basal lineage within the family, having diverged approx-

imately 10 mya from all other living canids.15 The remaining ca-

nids are comprised of three major clades: the red fox clade,

the South American clade, and the wolf-like clade. The Arctic

fox belongs to the red fox clade, which diverged from the wolf-

like clade approximately 7–8 mya. The domestic dog is part of

the wolf-like clade and diverged most recently, having split

from other wolf-like canids about 3–4 mya. There are also differ-

ences in the genome assembly sizes—the gray fox possesses a

larger genome (2.66 Gb) than the dog (2.48 Gb) or the Arctic fox

(2.35 Gb). Some of these differences may be due to the sex of the

individual selected for assembly. Although GC content is rela-

tively similar across all three species (∼42%), repeat content is

variable, with the gray fox exhibiting the highest percentage

(38.23%), followed by the dog (33.67%) and the Arctic fox

(31.29%). These genomic differences are likely to bias down-

stream haplotype-based analyses that rely on synteny and

linkage disequilibrium (e.g., demographic inference and recom-

bination mapping). Despite this, most previous genomic

research within Canidae—including studies on common (gray

fox), near-threatened (Channel Island fox),16,17 and endangered

(Ethiopian wolf)18 species—has been conducted by mapping to

the domestic dog genome, primarily because it was the only

canid reference genome available with annotations and had

both high continuity and contiguity.15

The recently published gray fox reference genome14 provides

us with a high-quality conspecific reference for alignment, variant

calling, and, ultimately, for quantifying reference bias. Here, we

re-analyze previously published WGS data from two populations

of North American gray foxes.12 We examine how inference of

demographic histories and recombination landscapes differ

when using the heterospecific domestic dog and Arctic fox ge-

nomes in contrast to the conspecific gray fox genome. To inves-

tigate the effects of reference bias on our analysis, we compare

the underlying genetic variation and the site frequency spectrum

(SFS) estimated for each population using different reference ge-

nomes as well as estimates of genetic diversity and differentia-

tion. Finally, we examine the effect of reference bias on both coa-

lescent and SFS-based demographic inference, FST outlier

scans for selection, and recombination rate inference.

RESULTS

We analyzed whole-genome resequencing data from 12 gray

foxes, including 6 from the eastern US and 6 from the western

US populations (Figures 1A and S1). We examined reference

bias by mapping these data to three reference genomes: the do-

mestic dog genome CanFam4,19 the Arctic fox genome,20 and

the conspecific gray fox genome14 (Figure 1B). Gray fox reads

showed significantly higher mapping success to the conspecific

reference genome compared with heterospecific genomes

(99.7% vs. ∼99%; χ2
KW = 33.19, p < 0.001; Table 1), with genes

in unmapped regions enriched for sensory perception and im-

munity functions. Additionally, proper read pairing was higher

with the conspecific reference (94.7%) vs. heterospecific refer-

ences (89.4%–90.3%), representing nearly 5% more properly

paired reads (χ2
KW = 40.14, p < 0.001).

A species-matched reference genome yields more SNPs

and rare variants

We examined the impact of reference genome choice on the

detection and characterization of genetic variation and allele fre-

quency distributions in gray fox populations. Across all reference

genomes, we detected more SNPs in the western population of

gray foxes compared with the eastern population, with nearly

double the number of SNPs identified in the west (Figure 1;

Table 1). Notably, the gray fox reference genome consistently

yielded more SNPs compared with the heterospecific refer-

ences, with 26%–32% more variants identified in each popula-

tion (Table 1; Figure 1).

We identified more singletons (i.e., rare variants where an

allele is only found once in the population sample) in the east

and west using the gray fox reference (Figures 1 and 2). Specif-

ically, the conspecific reference detected 33% more singletons

(2.4 M vs. 1.8 M) in the eastern population and 35% more single-

tons (5.4 M vs. 4 M) in the western population compared with the

heterospecific references. In addition, mean SNP depth varied

slightly across genomes, with gray fox showing higher values

(mean: east; 8.5, west; 8.7) compared with Arctic fox and dog

(both east: 8.3, west: 8.6). Missing data on a per-site basis

were lowest with the gray fox genome (east and west: 0.02),

whereas the Arctic fox and dog genomes had higher missing-

ness (east: 0.05, west: 0.03).

After lifting over SNPs in the heterospecific genomes to their

corresponding positions in the gray fox genome, we found that

approximately 80% of the variants identified using heterospecific
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reference genomes were also identified as variants when using

the gray fox genome (Figure 1). Among these matching variants,

non-singleton SNPs made up about 50%–53%, while the

remainder were singletons. The western population had a higher

proportion of matching singletons compared with that in the east

(∼32% vs. ∼24%), whereas the eastern population had a slightly

higher proportion of matching non-singleton SNPs (∼53% vs.

∼50%). For the variants that did not lift over as SNPs, the majority

(14%–18%) were not identified as any type of variant in the gray

fox genome. Of these, about half mapped to invariant sites, while

the other half did not map at all (Table S1).

A species-matched reference genome results in higher

effective population size estimates

We inferred demographic histories using smc++21 (sequential

Markov coalescent) and observed distinct population size trajec-

A

D

E F

C

B Figure 1. Reference bias influences variant

detection

(A) Sampling localities of gray fox genomes, with a

star indicating the origin of the reference

genome14 and circles representing WGS data.12

(B) Phylogenetic relationships of three canid

reference genomes: Arctic fox (Vulpes lagopus,

blue), domestic dog (Canis lupus familiaris, red),

and gray fox (Urocyon cinereoargenteus, gold,

most basal). Diploid chromosome numbers (2n)

shown for each species.

(C–F) SNP counts and liftover classifications for

eastern (C and D) and western (E and F) pop-

ulations. Bar charts show total SNP counts (mil-

lions, above bars) divided into singleton (light) and

non-singleton (dark) variants. Alluvial diagrams

track variant reclassification when lifting over from

heterospecific to gray fox reference genomes,

showing transitions between singleton, SNP,

invariant (‘‘not snp’’), and unmapped (‘‘not map’’)

categories. Percentages show variant proportions

and transition flows. Species-matched reference

genomes yield higher effective population size

estimates.

See also Figures S1 and S5.

tories when using different reference ge-

nomes for both the eastern and western

populations. Across all genomes, the

western population consistently showed

higher effective population size (Ne) esti-

mates than the eastern population

(Figure 2). The gray fox genome pro-

duced trajectories with smaller fluctua-

tions in Ne over time and generally higher

Ne estimates, particularly for the western

population. In contrast, the Arctic fox and

dog genomes revealed more variability,

especially in the west, where the discrep-

ancies between reference genomes were

more pronounced. For instance, in the

most recent time period, approximately

5,000–7,000 years ago, the gray fox

genome indicated population growth in the west, although it

should be noted that smc++ typically has higher uncertainty for

estimates in the recent past, <6,000 years ago.21 Meanwhile,

the heterospecific genomes suggested a population decline,

with Ne estimates dropping below 75,000.

To evaluate whether removing variants that failed to map be-

tween species improves demographic inference accuracy, we

compared smc++ trajectories before and after masking non-

lifted-over SNPs in both heterospecific genomes and recipro-

cally in the gray fox genome. This approach made the demo-

graphic trajectories more similar across reference genomes

(Figure S2). We also suspected that the total number of SNPs

might affect demographic inference, so we downsampled the

gray fox SNPs to random subsets matching the number of vari-

ants available when using lifted-over variants from other ge-

nomes. These downsampled trajectories were also similar to
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the lifted-over results, indicating that observed differences in de-

mographic trajectories were driven not only by variant identity

differences but also by the total number of informative variants

available for analysis.

To evaluate how reference bias impacts demographic infer-

ence methods, we supplemented smc++ analysis (combining

SFS with linkage disequilibrium in coalescent hidden Markov

models [HMMs]) with MSMC2 (multiple sequentially Markovian

coalescent, coalescent HMM only) and stairway plot 2 (SFS

only) (Figure S2). Both MSMC2 and stairway plot 2 exhibited

greater inconsistencies across reference genomes for the

eastern population compared with the western population.

MSMC2 inferred recent growth for the eastern population across

all references, but heterospecific references exaggerated this

growth, yielding eastern population sizes surpassing western

ones—an outcome not observed with other methods and incon-

sistent with higher western diversity estimates. In contrast, stair-

way plot 2 revealed larger discrepancies in the eastern popula-

tion during ancient times. For the western population, MSMC2

inferred recent growth only when using heterospecific refer-

ences, whereas stairway plot 2 indicated stability across refer-

ences, highlighting the varying sensitivities of demographic infer-

ence methods to reference bias. Despite variation across

reference genomes, the methodological approach had a stron-

ger influence on demographic inference outcomes. The dispar-

ities between methods highlight the critical importance of sel-

ecting appropriate demographic reconstruction methods, as

method-specific biases can overshadow reference genome vari-

ation and underscores the need for careful method selection.

Recombination rates vary across reference genomes

and populations

We detected significant differences in the distributions of

recombination rates, inferred using pyrho3 (see Table 2 for pa-

rameters), across reference genomes in both populations

(Anderson-Darling k-sample test, p < 0.001; Figure 3). In the

eastern population, recombination rates were lower when in-

ferred using the Arctic fox genome compared with the gray

fox genome. The average recombination rate was 0.448 cM/

Mb with the Arctic fox genome, which is approximately 31%

lower than the 0.650 cM/Mb observed with the gray fox

genome. Conversely, when using the CanFam4 genome, the

average increased to 0.872 cM/Mb, about 34% higher than

the rate inferred with the gray fox genome. In the western pop-

ulation, recombination rates were higher when inferred using

both heterospecific genomes compared with the conspecific

gray fox genome. Specifically, the average recombination rate

was 1.02 cM/Mb with the Arctic fox genome, approximately

13% higher than the 0.903 cM/Mb observed with the gray fox

genome, and 0.989 cM/Mb with the CanFam4 genome, about

9.5% higher than the rate inferred with the gray fox genome.

Overall, these differences were more pronounced in the east,

where the heterospecific genomes led to both underestimation

(Arctic fox) and overestimation (CanFam4) of recombination

rates relative to the gray fox genome. In contrast, in the west,

both heterospecific genomes consistently overestimated

recombination rates compared with the gray fox genome, and

the differences were less pronounced.

Additionally, recombination landscapes based on each gen-

ome revealed substantial variation across 50-kb windows, with

heterospecific reference genomes resulting in increased vari-

ability, particularly toward chromosome ends. In the eastern

population, using the conspecific gray fox genome, recombina-

tion rates ranged from 0.000343 to 7.34 cM/Mb. However, when

using the heterospecific Arctic fox genome, the maximum

recombination rate doubled to 14.9 cM/Mb, and with the

CanFam4 genome, it more than tripled to 23.4 cM/Mb. Similarly,

in the western population, recombination rates estimated with

the gray fox genome varied from 0.000598 to 11.6 cM/Mb.

With the Arctic fox genome, the maximum recombination rate

more than doubled to 24.9 cM/Mb, and with the CanFam4

genome, it increased to 14.5 cM/Mb. Compared with the gray

fox genome, the heterospecific genomes resulted in higher

maximum recombination rates, with a consistent trend of over-

estimation toward the ends of chromosomes, suggesting that

heterospecific reference genomes can lead to an overestimation

of recombination rates, especially at the higher end of the spec-

trum (Figure S3).

Heterospecific genomes underestimate diversity and

differentiation

We detected significant differences in estimates of average

nucleotide diversity (π) in 50-kb windows in both gray fox popu-

lations based on the three reference genomes (Figure 4). In the

Table 1. The total number of successfully mapped reads, number of SNPs, and heterozygosity estimates (mean ± standard deviation)

for each reference genome and population

Genome Population Reads mapped Total SNPs Heterozygosity (mean ± SD)

Arctic fox east 3,836,962,124 5,407,943 0.181 ± 0.057

CanFam4 east 3,848,140,971 5,392,973 0.181 ± 0.058

Gray fox east 3,865,958,291 6,828,177 0.200 ± 0.051

Arctic fox west 1,032,573,693 10,012,122 0.163 ± 0.049

CanFam4 west 1,035,433,543 9,969,686 0.163 ± 0.049

Gray fox west 1,040,317,760 13,199,882 0.174 ± 0.047

The total number of reads (both mapped and unmapped) was 3,886,389,246 for the eastern population and 1,043,628,176 for the western population.

Mapping success was significantly higher to the conspecific gray fox reference (99.7%) compared with heterospecific references (∼99%), with un-

mapped reads from heterospecific alignments enriched for genes involved in sensory perception and immunity, suggesting systematic exclusion

of functionally important regions when using heterospecific references.
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eastern population, nucleotide diversity was lowest with the

CanFam4 genome (π = 0.000618), followed closely by the Arctic

fox (π = 0.000625), whereas the gray fox genome yielded a higher

estimate of π = 0.000812 (χ2
KW = 6,663.3, p < 0.001). Similarly, in

the western population, diversity was lowest using the hetero-

specific references (Arctic fox: π = 0.00122, CanFam4: π =

0.00121), whereas the gray fox genome produced a higher esti-

mate of π = 0.00164 (χ2
KW = 12,409, p < 0.001).

The variation in estimates of nucleotide diversity was slightly

more evident in the western population, where π was approxi-

mately 1.34 times higher using the gray fox genome compared

with the heterospecific references, whereas in the eastern pop-

ulation π was 1.31 times higher. Although estimates of π were

higher in the west than in the east across all reference genomes,

the difference between populations was greater when using the

gray fox genome, where diversity in the west was about 2.02

times higher than that in the east. By contrast, diversity based

on the Arctic fox genome showed a 1.95-fold difference between

the west and east, and CanFam4 showed a similar 1.96-fold

difference.

A

B

Figure 2. Reference bias influences the SFS

and demographic trajectories

(A) SFS for eastern and western populations show

more singletons using the conspecific gray fox

genome.

(B) Effective population sizes (y axis) and years

from present (x axis) inferred with smc++ reveal

discordant demographic histories of eastern (light)

and western (dark) foxes resolved using the spe-

cies-matched (gold) and heterospecific genomes

(red and blue).

See also Figure S2.

Estimates of genetic differentiation

(FST) between the eastern and western

populations also varied depending on

the reference genome. The heterospe-

cific references produced identical FST

values (mean FST = 0.189), while the

gray fox genome resulted in a significantly

higher mean FST of 0.197 (χ2
KW = 558.27,

p < 0.001). Additionally, the correlation

between nucleotide diversity and FST

was more strongly negative in the eastern

population (τ = − 0.173 to − 0.196)

compared with the western population

(τ = − 0.081 to − 0.118), with the strongest

correlations observed using the gray fox

reference in both populations.

In both populations, mean Tajima’s D

was lowest with the gray fox genome

(− 0.108 east, − 0.356 west), compared

with the Arctic fox (− 0.056 east, − 0.329

west) and CanFam4 (− 0.063 east,

− 0.328 west) references (χ2
KW = 195.3

east, 144.4 west; p < 0.001). Pairwise

comparisons confirmed significantly lower

Tajima’s D estimates with the gray fox genome (p < 0.001),

whereas estimates did not differ between the two heterospecific

references (p = 0.17 east, p = 1.00 west). This indicates an excess

of low-frequency polymorphisms when mapping to the conspe-

cific genome, consistent with the higher number of singletons de-

tected in the SFS based on the gray fox reference.

Reference genome choice affects FST outlier detection

We defined outliers as windows with FST values exceeding three

standard deviations above the mean for each reference genome,

then matched these windows across reference genomes to

identify shared and unique outlier regions. Across comparisons,

we observed that heterospecific references consistently identi-

fied more than twice the number of unique outlier windows

compared with the conspecific reference (Figure 5). Notably,

the number of windows unique to each heterospecific reference

was similar to the number of shared outliers between the heter-

ospecific and conspecific references. In the Arctic fox and gray

fox comparison, 148 shared outlier windows were identified,

with 137 unique to the Arctic fox reference and 63 unique to

ll

Cell 188, 1–14, November 26, 2025 5

Please cite this article in press as: Akopyan et al., Reference genome choice compromises population genetic analyses, Cell (2025), https://

doi.org/10.1016/j.cell.2025.08.034

Article



the gray fox reference (Figure 5A). Between the Canfam4 and

gray fox reference genomes, 165 outlier windows were shared,

with 141 unique to Canfam4 and 61 unique to gray fox

(Figure 5B). The majority of windows in both comparisons did

not show elevated FST values in either reference (33,350 and

31,649 in the Canfam4 and the Arctic fox comparisons, respec-

tively), reflecting our conservative method of outlier detection.

Between the Arctic fox and Canfam4, we identified 191 shared

outlier windows, 158 windows unique to the Arctic fox reference,

and 42 windows unique to the Canfam4 reference, with 35,133

windows showing no elevated FST values in either reference.

Thus, the Arctic fox and Canfam4 references shared slightly

more outliers with each other than either shared with the gray

fox (148–165), while the number of unique outliers for each

A

D

C

B

Figure 3. Recombination rate comparisons between reference genomes for gray fox populations

(A and B) Histograms of the square root of recombination rates (cM/Mb) across 50-kb windows in (A) eastern and (B) western populations. Colors represent the

three reference genomes used for recombination rate estimates, with vertical lines representing mean values.

(C and D) Loess-smoothed (span = 0.1) recombination rates (cm/Mb) per chromosome computed over 50-kb windows in eastern (C) and western (D) gray foxes

based on the three reference genomes.

See also Figure S3.
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heterospecific reference remained comparable to their gray fox

comparisons.

Functional enrichment patterns reveal reference-

specific biological processes in FST outliers

The functional enrichment analysis of FST outliers revealed both

distinct and overlapping Gene Ontology (GO) biological process

terms across reference genomes (Figure 4C). The gray fox had

the highest number of unique terms with 74, followed by Can-

fam4 with 71, and the Arctic fox with 65, indicating that each

reference captured distinct biological processes. Importantly,

there were more unique terms than shared terms across refer-

ences. Among shared terms, 55 were common to all three refer-

ences. Notably, the overlap between gray fox and Canfam4 (48

shared terms) was larger than the overlap between Arctic fox

and gray fox (25 terms) or Canfam4 (26 terms), suggesting a

closer alignment in identified biological processes between the

gray fox and Canfam4 references.

Further, the unique terms identified by each reference genome

suggested distinct thematic focuses (Figure S4). The Arctic fox

reference highlighted processes related to cellular transport,

secretion, and signaling, with terms like ‘‘positive regulation of

catecholamine secretion’’ and ‘‘Golgi to endosome transport,’’

indicating an emphasis on cellular signaling and developmental

regulation. The Canfam4 reference captured growth, differentia-

tion, and endocrine response, with terms such as ‘‘positive regu-

lation of muscle cell differentiation’’ and ‘‘response to thyroid

hormone,’’ pointing to processes involved in physiological devel-

opment. In contrast, the gray fox reference emphasized nervous

system function, immune modulation, and cell proliferation,

reflected by terms like ‘‘positive regulation of nervous system

process’’ and ‘‘calcineurin-mediated signaling.’’

GO enrichment analysis of genes located exclusively in Arctic

fox reference-specific outlier windows revealed significant

enrichment for terms related to muscle development and meta-

bolism. The top biological process terms included ‘‘muscle

A

D

E

CB

Figure 4. Estimates of diversity and differentiation are higher with the gray fox reference in eastern and western gray fox populations

(A–C) Nucleotide diversity (π) for eastern (A) and western (B) gray fox populations and genetic differentiation (FST) between the populations (C) in 50-kb windows

based on three reference genomes. Violin plots with mean estimates and standard deviation error bars are shown.

(D and E) The correlation between diversity and differentiation across genomic windows for the eastern (D) and western (E) populations is illustrated. Kendall’s tau

(τ) correlation coefficients are reported, showing significant negative correlations between π and FST in both populations across all reference genomes.

See also Figure S4.
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organ development’’ (GO:0007517), ‘‘positive regulation of mus-

cle hypertrophy’’ (GO:0014742), and ‘‘positive regulation of

glycolytic process’’ (GO:0045821). In contrast, genes in Can-

fam4 reference-specific outlier windows showed markedly

different functional enrichment patterns, predominantly associ-

ated with chromosomal organization and cellular differentiation.

The most significant terms included ‘‘positive regulation of chro-

mosome organization’’ (GO:2001252), ‘‘cell differentiation in spi-

nal cord’’ (GO:0021515), and ‘‘regulation of chromosome sepa-

ration’’ (GO:1905818). These distinct functional enrichment

patterns demonstrate how reference genome choice can lead

to substantially different biological interpretations. The Arctic

fox reference-specific outliers suggest selection on genes

involved in muscle development and energy metabolism, which

could be interpreted as adaptations related to locomotion, hunt-

ing behavior, or thermal regulation. Conversely, the Canfam4

reference-specific outliers point toward selection on chromo-

somal organization and cellular differentiation pathways, poten-

tially indicating differences in developmental processes or cell

cycle regulation.

DISCUSSION

Reference genomes are essential tools in genetic studies,

serving as coordinate systems for annotating sequence features

and comparing individuals and populations. However, many

non-model organisms lack annotated chromosome-level as-

semblies,22 forcing researchers to use genomes from closely

related species,23,24 which can compound reference bias. Refer-

ence bias has been previously studied across the tree of

A

C

B

Figure 5. Reference-specific patterns revealed by FST outlier and functional enrichment analyses

(A) Scatterplot comparing FST values between the gray fox and arctic fox references, with outlier windows unique to the arctic fox (blue) and gray fox (gold)

highlighted.

(B) Scatterplot comparing FST values between the gray fox and Canfam4 references, highlighting outliers unique to Canfam4 (red) and gray fox (gold). For both

(A) and (B), outliers shared between the two references are shown in black, while non-outlier windows are in gray.

(C) UpSet plot of significant (p < 0.05) GO biological process terms identified as enriched for each reference genome. Bars represent the intersection size (y axis)

of GO terms shared across reference genomes (x axis).

See also Figure S4.
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life,5,6,10,25–28 both within species26,27 and between species.6 In

this study, we demonstrate that mapping to a heterospecific

reference genome significantly impacts population genomic in-

ferences. This leads to discrepancies in effective population

size estimates, recombination rates, measures of genetic diver-

sity, differentiation, and selection signals. Our findings highlight

the importance of using conspecific genomes for accurate

evolutionary inferences.

Although the average sequencing depth showed only minor

discrepancies using a discordant reference, we observed signif-

icant differences in both the percentage of reads mapped and

the proportion of properly paired reads. Reads are not properly

paired when the read orientation is incorrect, one read does

not map at all, and/or the gap between the reads is of an unex-

pected size. Although thresholds for gap size and mismatch

rates can be changed during read alignment, most studies use

inconsistent filters at this stage of the pipeline, including retaining

only reads with a certain mapping quality (MAPQ) score, retain-

ing proper pairs, or only retaining the primary alignment.29 Likely,

the number of properly paired reads decreases when the gray

fox is mapped to the heterospecific genomes because of struc-

tural variation between the genomes, some of which may be

smaller insertions or deletions (indels), and some of which may

reflect the large chromosomal rearrangements between the spe-

cies. Following common practice, we retained improperly paired

reads, which may explain downstream variant detection effects,

though selective filtering could potentially mitigate this.

To exemplify the inconsistency of pipelines and filters applied,

we screened five papers that used the domestic dog as a refer-

ence genome for analyses of a heterospecific canid taxa and

found that four papers did not remove improperly paired reads

before variant calling,12,16,18,30 one paper did remove improperly

paired reads,17 and the remaining mapping and filtering choices

had almost no overlap. Despite many of these studies filtering on

MAPQ, mapping quality is assigned for an individual read by Bur-

rows-Wheeler Aligner (BWA)31 and not as a pair (i.e., the MAPQ is

ambiguous to the read being properly paired). The genome anal-

ysis toolkit (GATK) automatically filters reads with a MAPQ of 10

or less during variant calling, and other filters such as genotype

quality (GQ; accuracy of the particular variant call at that site) and

variant confidence (QUAL; how confident the variant caller is that

there is variation at that site) are also likely to affect the resulting

variant calls. Though we do not explore these as part of this

work, a systematic investigation of these filters and their down-

stream impacts on mapping and variant calling, especially in

the case of divergent references, is highly needed.

We found that the conspecific gray fox genome provided a

more accurate representation of genetic variation, revealing

more SNPs and a more reliable SFS compared with the hetero-

specific genomes. Heterospecific references underestimated

the presence of low-frequency alleles, which can have profound

implications for downstream analyses. For example, underesti-

mating rare variants can lead to failure to detect recent popula-

tion expansion in demographic inference, as the characteristic

excess of rare alleles that signals expansion would be artificially

reduced. Additionally, an underestimation of genetic load can

occur when assessing deleterious mutations, as harmful variants

tend to be maintained at low frequencies due to purifying selec-

tion. Furthermore, recombination rate estimates in population-

scale maps can become distorted due to missing variants, as

these estimates rely on accurate measurement of linkage

disequilibrium patterns between neighboring loci.

The higher mean SNP depth and lower missing data rates with

the gray fox reference further support its superior performance in

variant detection, indicating a more accurate and comprehen-

sive alignment that reduces the likelihood of false negatives.

Approximately 20% of the variants identified with heterospecific

references were incorrectly identified when lifted over to the gray

fox genome (Figure 1). Of these, ∼5% were misclassified

(singleton vs. non-singleton) and ∼15% were unrecognized as

variants, with half mapping to monomorphic sites and half failing

to map (Table S1). The 20% discrepancy likely results from

sequence divergence between species, leading to alignment er-

rors or misinterpretation of homologous regions. The higher pro-

portion of matching non-singleton SNPs suggests that common

variants are more consistently detected across references, while

rare variants are more likely to be missed when using heterospe-

cific genomes. When estimating nucleotide diversity (π), the gray

fox reference produced higher values in both populations, indi-

cating that heterospecific genomes can underestimate genetic

diversity within populations. The greater difference in π between

the western and eastern populations observed with the gray fox

genome also suggests that the conspecific reference provides a

more sensitive measure of genetic diversity.

Having performed the first demographic inference for the gray

fox with a conspecific reference genome, we sought to compare

the eastern and western gray fox populations to gain deeper in-

sights into their population histories. These two populations had

quite distinct demographic trajectories, with the western popula-

tion showing an overall larger and more stable population size

with no recent growth. In contrast, the eastern population

showed a stable population with some recent growth. Genetic

diversity was significantly higher in the western gray fox popula-

tion compared with the eastern population, suggesting differing

evolutionary pressures and histories in these lineages. Our re-

sults differ from previous studies12 of these populations, which

mapped to CanFam3.1 and used the pairwise sequentially

Markovian coalescent (PSMC) on a single individual to infer the

ancient demographic histories of the populations. Specifically,

we infer smaller and more stable populations throughout time,

with less of a disparity between eastern and western population

sizes. Both our study and the previous study identified the same

pattern of the western population being more diverse than the

eastern population for most time points, though the magnitude

of our diversity estimates is much lower than previous esti-

mates.12 We also did not detect a recent decline in the west,

which was found only when mapped to heterospecific refer-

ences in our analysis as well as in previous work.12

We used multiple methods for demographic inference to

determine whether coalescent or SFS-based approaches were

more robust to reference bias. All methods showed that hetero-

specific genomes consistently underestimated effective popula-

tion sizes compared with the conspecific reference. The conspe-

cific reference produced estimates that align more closely with

expectations based on species biology and similar studies in

other mammals.32 Importantly, heterospecific genomes
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produced demographic trajectories inconsistent with the

conspecific reference throughout most of the inferred history,

regardless of population or inference method (Figure S2). This

inconsistency is particularly worrying in the case of species

threatened with extinction because approximately 99% of these

species do not have a reference genome33 and researchers will

ultimately be forced to map to a heterospecific reference. When

researchers must use heterospecific references, several strate-

gies can mitigate reference bias. For instance, using end-to-

end alignment methods that require the entire read to align re-

duces bias at indels, compared with local aligners that allow

parts of reads that do not align to be ignored (i.e., soft clipped).34

Using local realignment methods that ensure consistent gap

placements across all reads covering the same region, and

comparing results across different filtering thresholds can also

help reduce bias.34 Additionally, constructing consensus refer-

ences or using multiple population reference genomes in a

‘‘reference flow’’ approach effectively reduces bias while

requiring fewer computational resources than graph-based

methods.35

Because pedigree-based recombination estimates are diffi-

cult to obtain and have low resolution, researchers typically

use population-based methods like pyrho3 to infer recombina-

tion maps that account for demographic histories. Focusing on

the recombination rate estimates inferred with the species-

matched reference, we found that landscapes of recombination

differed notably between the eastern and western populations,

with the west consistently exhibiting higher recombination rates,

particularly at chromosome ends. A recombination landscape

that is fairly stable, with peaks toward the end of the chromo-

some, has been previously observed in dogs36 and is particul-

arly interesting given that the family Canidae has a pseudogen-

ized copy of positive-regulatory-domain zinc-finger protein 9

(PRDM9).14,37 PRDM9 is known to initiate meiotic recombination

by specifying the locations of double-strand breaks and creating

recombination hotspots. Previous work highlighted how its

pseudogenization in Canidae contributes to observed recombi-

nation patterns in dogs, which can be used to identify the direc-

tionality of chromosomes.36 Chromosome directionality has yet

to be established for the new reference genome, so future

work could take advantage of the result to identify directionality

of chromosomes in the gray fox.

Conversely, in the case of heterospecific reference genomes,

where demographic trajectories were quite discordant from the

conspecific reference, the inferred recombination maps and

rates differed significantly in both populations. In the eastern

population, recombination rates were underestimated with the

Arctic fox genome and overestimated with the dog genome

compared with the gray fox genome, whereas in the west,

both heterospecific genomes overestimated recombination

rates, with less pronounced differences. The inconsistent direc-

tion of bias—where the Arctic fox genome underestimates

recombination rates in the eastern population but overestimates

them in the western population compared with the gray fox

genome—suggests that population-specific patterns may influ-

ence how reference bias manifests. This variability can compli-

cate mitigation efforts, as the potential sources of bias differ be-

tween populations, making uniform corrections ineffective and

highlighting the complexities in addressing reference bias

when it varies between populations. In addition, recombination

landscapes based on heterospecific genomes showed greater

variability, particularly toward chromosome ends, with higher

maximum rates than those inferred using the gray fox genome.

These patterns highlight how reference genome choice can

introduce substantial bias, affecting both the magnitude and dis-

tribution of inferred recombination rates.

Potential sources of bias for the inferred recombination rate

include chromosomal synteny and spurious singletons. In the

context of synteny, previous work has shown that there have

been large-scale chromosomal rearrangements within the evolu-

tionary history of these species.14 These karyotype differences

have resulted in less than half of the dog and Arctic fox chromo-

somes being syntenic with gray fox chromosomes (Figure S5;

Table S2). Thus, when a recombination map is estimated using

a heterospecific genome with karyotypic differences as a refer-

ence, we are ultimately disrupting linkage patterns and inferring

false recombination events across multiple chromosomes. To

investigate this, we examined whether differences in recombina-

tion rates between each heterospecific reference and the

conspecific reference varied between syntenic and non-syntenic

chromosomes but found no difference in the mean recombina-

tion rates in either population or genome comparison (Figure

S3). The observed inflation in recombination rates could result

from disrupted linkage patterns caused by lack of synteny,

increased sequence divergence leading to spurious singletons,

or an interaction of these factors. Disentangling these contribu-

tions is challenging because they are inherently interconnected:

synteny disruptions and sequence divergence both affect how

variants are identified and mapped, while spurious singletons

may arise as an artifact of these processes, obscuring their indi-

vidual effects. In syntenic regions, pyrho3 would infer inflated

recombination rates when there are spurious singletons and

other incorrectly mapped variants being interpreted as evidence

of recombination events. The misclassification and misidentifica-

tion of∼20% of the variants as a result of reference bias (Figure 1)

is likely what led to skewed estimates of recombination rates,

especially in regions of the genome where alignment is poor.

The observation of non-syntenic regions and lower reference

genome quality introducing bias was also captured in recent

work examining an improved olive baboon reference genome.38

Finally, we examined estimates of FST and used the genome-

wide distribution of FST to perform an outlier scan to detect genes

that are potentially under selection. We found that estimates of

FST were higher when using the gray fox genome compared

with the values obtained from heterospecific references. We

also observed a stronger negative correlation between π and

FST when using the gray fox reference, suggesting that regions

of low diversity correspond to areas of high differentiation. The

discrepancy among overall π and FST values across reference ge-

nomes is not concerning in terms of magnitude, suggesting that

genome-wide averages are likely sufficient for broadly character-

izing diversity within, and differentiation between, populations.

However, studies typically go beyond genome-wide averages,

examining variation in FST across the genome to identify regions

of high differentiation, which may indicate the presence of genes

under selection or regions contributing to reproductive isolation.
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Importantly, we found that the choice of reference genome

substantially affected FST outlier detection. Heterospecific refer-

ences identified more than twice the number of unique outlier

windows compared with the conspecific reference. This discrep-

ancy could be due to alignment issues, where regions not well

conserved between species may erroneously appear as highly

differentiated regions. The limited overlap of outlier windows be-

tween references raises concerns about the reliability of using

heterospecific genomes for detecting genomic regions under

selection. The distinct GO terms associated with each reference

further illustrate how reference genome choice shapes the in-

ferred biological processes underlying FST outliers. For instance,

unique GO terms in the Arctic fox reference emphasized cellular

signaling and developmental regulation, while Canfam4 high-

lighted growth and endocrine response, and the gray fox refer-

ence captured nervous system function and immune modula-

tion. These differences underscore the biological biases

introduced by reference genome choice. In sum, using a hetero-

specific reference genome would inflate false positives for the

FST outliers, genes, and biological pathways that may be under

selection. Using a conspecific reference would certainly provide

more accurate insights into the biological processes influencing

genetic differentiation within and between species.

This study highlights the critical impact of reference genome

choice on population genomic inferences and emphasizes the

value of conspecific genomes in uncovering accurate evolu-

tionary histories. Quantifying reference bias using Canidae has

implications for some of the world’s most endangered species,

such as the Ethiopian wolf (Canis simensis) and the African wild

dog (Lycaon pictus), and more common species, like the gray

fox and coyote (Canis latrans). Reference bias may also affect

our understanding of historic hybridization and introgression, a

phenomenon common in the canid clade.30,39 Furthermore,

genomic data are increasingly being used to inform conservation

management plans. Measures such as adaptive capacity40 and

differential adaptations between populations41 are being used

to make recommendations regarding translocations and rewild-

ing. Our selection scans suggest that these inferences are skewed

by reference bias when divergent reference genomes are used.

Our results underscore the necessity of using conspecific

reference genomes in conservation genetics and evolutionary

studies, particularly for accurately understanding divergence

and diversity in non-model organisms. However, we acknowl-

edge that developing high-quality reference genomes for all spe-

cies is not always feasible due to resource constraints. In such

cases, careful consideration should be given to the phylogenetic

proximity and degree of synteny of the available reference ge-

nomes. Our work demonstrates that even closely related heter-

ospecific references may not adequately capture the genetic

landscape of the target species. Future studies should focus

on improving reference genome assemblies for non-model or-

ganisms, leveraging advancements in sequencing technologies

and assembly algorithms. Additionally, methodologies that are

less reference dependent, such as reference-free variant calling

or pangenomic approaches, may help mitigate some of the

biases introduced by heterospecific references.

Limitations of the study

Our work provides important insights into reference bias but has

limitations. First, the gray fox reference genome comes from an

east coast individual, potentially introducing bias that future work

could mitigate computationally or by generating a west coast refer-

ence. Second, we quantified reference bias in Canidae, a mamma-

lian clade with notable karyotype shifts. Despite these shifts, Can-

idae species are relatively young, likely moderating reference bias

compared with more divergent taxa. More divergent non-mamma-

lian taxa are likely to experience stronger reference bias. Because

non-mammalian species comprise most of the 99% of species

without reference genomes, this highlights the broader importance

of addressing reference bias. However, karyotype differences

occur even between closely related species, making Canidae use-

ful for studying the interplay between karyotype shifts and refer-

ence bias. Additionally, our mapping and filtering parameters,

while representing common practices, may influence the magni-

tude of reference bias observed. Further analysis is needed to

examine how these choices interact with reference bias and

impact other genomic analyses, including inference of introgres-

sion patterns and linkage disequilibrium, which were beyond the

scope of this study. This study does not address reference bias

in ancient DNA. Previous research has shown that, in addition to

DNA quality, reference bias is influenced by factors such as

sequence length, genetic divergence,42,43 the alignment tool

used,42 and map quality filtering.42,44 Genetic summary statistics

require careful interpretation in ancient DNA studies, where both

human and non-human extinct lineages will be mapped to diver-

gent interspecific references. The additional temporal component

of ancient DNA will likely amplify the biases observed here.

Conclusions

We demonstrate that using a conspecific reference genome en-

hances the inference of population size histories and recombina-

tion rates, improves the detection of genetic variation, provides

more accurate estimates of nucleotide diversity and genetic differ-

entiation, and influences the biological interpretation of genomic

data. These findings highlight the broader implications for

genomic research in other non-model organisms and stress the

need for continued efforts in generating high-quality, species-spe-

cific genomic resources. Considering these biases, our work dem-

onstrates that results generated from mapping to a highly diver-

gent reference genome should be interpreted with caution.

RESOURCE AVAILABILITY

Lead contact

Requests for further information and resources should be directed to, and will

be fulfilled by, the lead contact, Jazlyn A. Mooney (jazlynmo@usc.edu).

Table 2. Pyrho hyperparameter settings for each reference

genome and both populations

Reference genome

Block penalty Window size (bp)

East West East West

Gray fox 25 25 50 25

Canfam4 25 50 50 50

Arctic fox 50 25 150 50
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Materials availability

This study did not generate new reagents.

Data and code availability

• All original code has been deposited at GitHub and is publicly available as

of the date of publication. Code for data filtering can be found at https://

github.com/ellieearmstrong/Gray_Fox_2023/tree/main/filtering, and

code for analyses can be found at https://github.com/makopyan/fox/.

• Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.
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Mosdepth v0.3.3 Pedersen and Quinlan46 https://github.com/brentp/mosdepth;

RRID: SCR_018929

SAMtools v1.16.1 Li and Durbin31 http://www.htslib.org/; RRID: SCR_002105

R v4.2.1/v4.3.2 R Core Team47 https://www.r-project.org/; RRID:

SCR_001905

Tidyverse Wickham et al.48 https://www.tidyverse.org/; RRID:

SCR_019186

GATK v4.1.4.1 McKenna et al.49 https://gatk.broadinstitute.org/; RRID:

SCR_001876

pysam v0.22.1 Li and Durbin31 https://github.com/pysam-

developers/pysam; RRID: SCR_021017

bedtools v2.31.1 Quinlan and Hall50 http://bedtools.readthedocs.io/; RRID:

SCR_006646

BCFtools v1.16 Danecek et al.51 http://samtools.github.io/bcftools/; RRID:

SCR_005227

GenMap v1.3.0 Pockrandt et al.52 https://github.com/cpockrandt/genmap

TETools v1.7 Lerat et al.53 https://github.com/l-modolo/TEtools

GALBA v1.0.9 Br�una et al.54 https://github.com/Gaius-

Augustus/GALBA

AUGUSTUS v3.3.2 Stanke et al.55 https://github.com/Gaius-

Augustus/Augustus; RRID: SCR_008417

SNPRelate v1.36.1 Zheng et al.56 https://github.com/zhengxwen/SNPRelate;

RRID: SCR_022719

VCFtools v1.14 Danecek et al.57 https://vcftools.github.io/; RRID: 001235

smc++ v1.15.4 Terhorst et al.21 https://github.com/popgenmethods/

smcpp

MSMC2 v2.1.4 Schiffels and Wang58 https://github.com/stschiff/msmc2; RRID:

SCR_023677

MSMC-tools Schiffels and Wang58 https://github.com/stschiff/msmc-tools

Stairway Plot 2 v2.1.2 Liu and Fu59 https://github.com/xiaoming-

liu/stairway-plot-v2

pyrho v0.1.0 Spence and Song3 https://github.com/popgenmethods/pyrho

minimap2 v2.14 Li60 https://github.com/lh3/minimap2; RRID:

SCR_018550

Crossmap v0.7.0 Zhao et al.61 https://crossmap.sourceforge.net/; RRID:

SCR_001173

GenomicRanges v1.54.1 Lawrence et al.62 https://bioconductor.org/packages/

GenomicRanges; RRID: SCR_017051

ComplexUpset v1.3.3 Krassowski et al.63 https://github.com/krassowski/

complex-upset; RRID: SCR_022752

Enrichr Xie et al.64 https://maayanlab.cloud/Enrichr/; RRID:

SCR_001575

paf2chain Guarracino65 https://github.com/AndreaGuarracino/

paf2chain

(Continued on next page)
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Whole genome sequence data and reference genomes

To investigate the impact of reference bias on population genomic inference of diversity, demography, selection, and recombination

in gray foxes, we obtained whole-genome resequencing data for 41 gray foxes sampled across North America (Figure S1) from Ko-

sugi et al.,1 in which the data were mapped to the domestic dog reference genome CanFam3.1.2 We re-mapped the data to three

reference genomes: (1) Arctic fox,3 (2) a more contiguous updated version of the dog genome CanFam4,4 and (3) our recently pub-

lished gray fox reference genome,5 based on an individual sampled in Vermont (Figure 1A). We identified syntenic and non-syntenic

chromosomes between species using information from Armstrong et al.6 and through alignments generated in Gopalakrishnan et al.5

All putatively syntenic chromosomes from Armstrong et al.6 were then manually interrogated using the genomic alignments from Go-

palakrishnan et al.5 Any putatively syntenic chromosome that mapped to more than one chromosome in either species was removed

and considered non-syntenic to be as conservative as possible.

Sample selection

We performed a principal component analysis (PCA) on SNP genotype data including all 41 individuals using the SNPRelate v1.36.113

package in R v4.3.2.9 We first converted the VCF file (see method details below) to a genomic data structure file using the

snpgdsVCF2GDS function. PCA was conducted with the snpgdsPCA function on genotype data with no missing values, generating

eigenvectors for each sample and eigenvalues representing the variance explained by each principal component. Based on the PCA

results (Figure S1), we subsampled the dataset to exclude hybrids, which are known to occur in the southwest sampling sites. To

achieve this, we selected the westernmost samples in PC space, prioritizing the inclusion of the high-coverage sample, and matched

this selection by choosing the same number of easternmost samples.

METHOD DETAILS

Mapping and variant calling

We mapped whole-genome data from gray fox individuals to each of three reference genomes (see above) using identical pipelines.

Sequence data was mapped using NVIDIA Parabricks v4.1.1.17 fq2bam with the provided reference and default parameters. We esti-

mated depth and other mapping statistics using Mosdepth v0.3.38 and SAMtools v1.16.1 flagstat, respectively. We tested for differ-

ences in these measures using pairwise.wilcox.test with p.adjust.method = ‘‘none’’ in R v4.2.1.9 Resulting BAM files were individually

run through Parabricks HaplotypeCaller with the ‘–gvcf’ flag in order to emit both variant and invariant site calls. Subsequently, GATK

v4.1.4.110 GenomicsDBImport was used to import the single sample VCFs prior to joint genotyping with the ‘-all-sites’ flag to retain

both variant and invariant sites. Autosomal chromosomes were provided as intervals, excluding sex chromosomes and unlinked

scaffolds for downstream analyses. Finally, we ran GATK GenotypeGVCFs with the ‘–all-sites’ flag to produce final gVCF files. Files

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

SnpEff Cingolani et al.66 http://pcingola.github.io/SnpEff/; RRID:

SCR_005191

bigWigAverageOverBed Kent et al.67 https://genome.ucsc.edu/goldenPath/

help/bigWig.html

filterGM.rb Armstrong and Campana68 https://github.com/ellieearmstrong/

Gray_Fox_2023

RM2bed.rb Armstrong and Campana68 https://github.com/ellieearmstrong/

Gray_Fox_2023

simplify_bed.rb Armstrong and Campana68 https://github.com/ellieearmstrong/

Gray_Fox_2023

Deposited data

Gray fox whole-genome data Preckler-Quisquater et al.12 GenBank: PRJNA966176

Gray fox reference genome Armstrong et al.14 GenBank: GCA_032313775.1

Arctic fox reference genome Peng et al.20 GenBank: GCF_018345385.1

Domestic dog reference

genome (CanFam4)

Wang et al.19 GenBank: GCF_011100685.1

Brown bear genome Armstrong et al.69 GenBank: GCF_023065955.2

Human genome assembly Nurk et al.70 GenBank: GCF_009914755.1

PhyloP scores for CanFam4 Meadows et al.71 Zenodo: 8084059
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were combined using BCFtools v1.1611 concat to create genome-wide variant calls. Read mapping counts were generated using

pysam v0.22.112 and custom scripts.

Variant filtering

Both repetitive and low-mappability regions were filtered using the BCFtools view command and providing the described bed file

after the ‘-T ’̂ flags. We then assessed quality statistics using BCFtools query with the flags ‘-f’ and pulled the statistics for allelic num-

ber (AN) and depth (DP). We calculated the mean and interquartile range for allelic number and depth for these statistics for each

genome. Subsequently, we used the BCFtools filter command with the ‘-i’ flag to include variants which had more than 90% of

the maximum AN value (2* number of samples), a quality score greater than 30 (‘QUAL >= 30’), and a depth that was greater than

the 25% percentile and below 1.5 times the mean depth, approximately. Finally, only biallelic sites were retained using BCFtools

view with the ‘-M 2’ flags. For specific filters and values see Github https://github.com/ellieearmstrong/Gray_Fox_2023/tree/

main/filtering.

Genome annotations

We produced mappability scores for each genome using GenMap v1.3.0.14 Mappability scores are used to assess the uniqueness of

kmers in the genome and identify regions which are repetitive and cause errors during mapping and variant calling. We used the fil-

terGM.rb script from Lindblad-Toh et al.15 to generate a file of sites with a mappability score < 1.

We also generated repetitive element annotations for each genome. Briefly, we ran TETools v1.716 on each genome assembly as in

Gopalakrishnan et al.5 Final output files were converted to bed files using the RM2bed.rb script and subsequently combined with the

mappability scores file using the simplify_bed.rb script.15

Genome annotations were previously generated for both versions of the dog genome, however, annotations have not been previ-

ously generated for the gray fox. Ideally, a combination of evidence from RNA and closely related species annotations would be used

to annotate the gray fox genome, but RNA data has not been generated for this species. As such, we used the GALBA v1.0.917 pro-

gram to generate draft annotations for the gray fox. Though these annotations are likely imperfect, since we are only using annotation

information to remove regions which may be evolving non-neutrally, these are sufficient for our purposes of exclusion. We down-

loaded protein files from the arctic fox (GenBank: GCF_018345385.13), domestic dog (GenBank: GCF_011100685.14), brown bear

(GenBank: GCF_023065955.218), and the most recent (at the time) human genome assembly (GenBank: GCF_009914755.119). These

files were provided as protein evidence to GALBA using the –prot_seq flag and run using AUGUSTUS v3.3.220 which was run with

default parameters.

Functional enrichment analysis of unmapped reads

To determine whether the reads that did not map to heterospecific reference genomes but mapped to the conspecific genome were

enriched for functional regions, we used the read tags (unique read identifiers) of the unmapped reads from Arctic fox and CanFam4

genomes to obtain the positions where they mapped in the gray fox genome. We used bedtools v2.31.121 to intersect those positions

with the gray fox genome annotation, then conducted a functional enrichment analysis for gene ontology biological processes using

Enrichr22 to identify biological processes significantly overrepresented in those regions.

Computing genetic diversity (π) and differentiation (FST)

Pairwise genetic diversity (π) within each population and genetic differentiation (FST) between populations were computed using

VCFtools23 v1.14, including six individuals from the east and six individuals from the west. We calculated π using a gVCF file contain-

ing all genome sites—both variant and invariant—and kept only sites without missing data for each population. FST was calculated

using a VCF file with only variant sites, retaining sites with no missing data across populations. We computed both summary statistics

in 50 kb windows. We examined the relationship between genetic diversity and differentiation for each population and reference

genome using a Kendall’s rank correlation test, given the exponential-like distribution of nucleotide diversity. Additionally, to compare

the number of segregating sites per site with nucleotide diversity, we calculated Tajima’s D using VCFtools v1.14 in non-overlapping

50 kb windows based on variant sites for each population and reference genome.

Quantifying genetic variation

We used VCFtools23 to obtain raw allele counts at all biallelic variant sites, which we summarized to get the total number of variants as

well as the number of singletons, i.e., rare variants where an allele is only found once. To calculate an SFS for each population based

on each reference genome, we used VCFtools to obtain allele counts at all fully covered (i.e., no missing data) biallelic sites, which we

summarized to get a folded SFS. Data summaries were performed using the tidyverse package24 in R v. 4.3.2.9 Site frequency

spectra were generated using 6 individuals from the east and 6 individuals from the west for the conspecific and heterospecific refer-

ence genomes.

SNPs with missing data were removed from these analyses. There were 3,496,241 SNPs in the East and 2,669,112 SNPs in the

West out of the 26,180,875 total SNPs that were removed due to missing data with Gray fox reference genome; 11,031,507 SNPs

in the East and 6,846,230 SNPs in the West out of the 43,583,377 total SNPs that were removed due to missing data with
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CanFam4 reference genome; and 11,526,220 SNPs in the East and 7,176,780 SNPs in the West out of the 45,042,040 total SNPs that

were removed due to missing data with Arctic fox reference genome.

Demographic inference

Demography was inferred using 6 individuals from the east and 6 individuals from the west with smc++25 v1.15.4, MSMC226 v2.1.4,

and Stairway Plot 2 v2.1.2.27 smc++ combines the SFS with linkage disequilibrium (LD) information in coalescent hidden Markov

models (HMM), MSMC2 uses a coalescent HMM without the SFS, and Stairway Plot 2 relies solely on the SFS.

For smc++, we parsed VCFs to generate input files for each autosomal chromosome using the vcf2smc command in smc++.

Because smc++ is not able to distinguish regions of missing data from very long runs of homozygosity, positions of regions with high-

ly repetitive sequence and/or low mappability that were masked prior to variant calling were provided in a bed file and marked as

missing data using the -m option in the smc++ data sets. Positions of genic regions were obtained from annotations and similarly

masked such that demographies were inferred using only putatively neutral regions of the genome. Further, smc++ calculates the

SFS by using a single ‘‘distinguished individual’’ selected from the pool of samples against which all other samples are compared,

which may impact demographic inference depending on the choice of distinguished individual. We therefore created multiple input

files by varying the identity of the distinguished individual and treating the remaining samples from each population as undistin-

guished. Input files were combined to generate a composite likelihood estimate by running the estimate command for fitting a

population size history to the data six separate times, once for each combination of population and reference genome. Runs

were conducted assuming a per-site per-generation mutation rate of 4.5e− 928 and 25 EM iterations, with estimates restricted be-

tween 2,500 and 500,000 generations since present. A thinning parameter of 1,792, calculated as 1,000×log(6) for the six individuals

in our analysis, was used as recommended in the smc++ user guide to control the frequency of conditional SFS emission and incor-

porate information from the undistinguished portion of the sample. A spline representation of population size history was fit using 12

knots to allow for sufficient flexibility while avoiding over-smoothing. We used a generation time of two years29 to convert the output

from coalescent units to units of time.

For Stairway Plot 2, we used the folded site frequency spectra that were generated for each population and reference genome

above as input. We used all bins of the SFS, total callable sites incorporated the monomorphic sites, a per-site per-generation mu-

tation rate of 4.5e− 9,28 a generation time of two years,29 and 67% of the data was used for training. Stairway Plot 2 also implements a

check for over or underfitting using various breakpoints. The breakpoints tested were (2, 5, 7, 10) and the best breakpoint value was

selected as one that minimized the log-likelihood.

For MSMC2, we first used BCFtools to remove sites with missing data from the gVCF file for each population and reference

genome, generated a BED file of sufficiently covered sites for masking, then split files to generate a mask for each chromosome

and a gVCF for each sample and chromosome. We then generated input files using generate_multihetsep.py in the MSMC-tools re-

pository, including a negative mask to remove regions with low mappability scores. We estimated population size histories by spec-

ifying pair indices (-I) for each individual, to avoid pairs of haplotypes from different individuals, as recommended for unphased

genomes.

To evaluate whether demographic reconstructions improve when using SNPs that successfully lifted over from the heterospecific

genomes to the gray fox genome, we re-ran smc++ after masking variants in the Arctic fox and dog genomes that failed to liftover. We

then compared these masked demographic trajectories to the original reconstructions.

Recombination rate estimation

Recombination rates were estimated using pyrho v0.1.0,30 which takes in the demography from smc++ and linkage information from

unphased data to estimate population-specific fine-scale recombination rates per generation.30 Using pyrho, we first precomputed

likelihood tables under the demographic models we inferred from smc++ to account for population size fluctuations across time and

the mutation rate (4.5e− 928). We then tested multiple sets of hyperparameters to produce reasonable data from the optimization

function. Parameters for block penalty, which controls the smoothness of the resulting map, and window size, the amount of bp

before a SNP is ignored, were selected based on their minimization of log(l2). Block penalty parameters tested were (25, 50, 100,

150, 200, 250) and window sizes tested were (25, 50, 100, 150). After hyperparameter selection (Table 2), we averaged the per-

base recombination rate inferred by pyrho into 50 kb windows and converted the values to units of centi-Morgan per megabase

by multiplying by 1e8 (100 cM per expected crossover multiplied by 1e6 bases per mb). To compare recombination hotspots across

references, we converted window positions between each heterospecific reference and the gray fox reference (described below).

Hotspots were defined as windows with recombination rates exceeding two standard deviations above the mean for each reference

genome and categorized based on whether they were shared across references or unique to a specific reference.

Identifying FST outliers and conducting functional enrichment analyses

Outliers were defined as windows with FST values exceeding three standard deviations above the mean for each reference genome. To

compare outlier regions across references, we converted window positions between each heterospecific reference and the gray fox

reference (described below). We also extended this analysis to compare FST outlier detection between the two heterospecific ge-

nomes. Outliers were categorized based on whether they were shared across references or unique to a specific reference. To identify

protein-coding genes within the outlier windows, we used Arctic fox and Canfam4 gene annotations, and the draft annotations we
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generated for the gray fox (described above). We used the GenomicRanges31 v1.54.1 package in R v. 4.3.29 to determine which genes

fell within the 50 kb windows of each reference genome. Foreground genes were defined as those located within the outlier windows,

while background genes included those located outside the outlier windows. We then conducted a functional enrichment analysis for

gene ontology (GO) biological processes using Enrichr22 to identify processes significantly overrepresented in the foreground gene set

compared to the background set. We used the ComplexUpset32 v1.3.3 R package to create upset plots showing the number of iden-

tified genes from each reference and their intersection. To investigate the impact of reference genome choice on FST outlier detection,

we examined the specific genes located within unique outlier windows for each heterospecific reference genome. This analysis aimed

to determine whether biologically plausible interpretations could be derived from potentially reference-biased regions.

To assess the impact of reference choice on outlier classification, we examined multiple genomic features within matched

outlier windows, including evolutionary constraint scores, gene annotations, and the distribution of synonymous and non-synony-

mous mutations. We obtained PhyloP constraint scores for CanFam4 from the International Dog10K project.33 Using bigWigAvera-

geOverBed,34 we calculated the mean PhyloP score for each 50kb window, matching the FST windows that we lifted over to align

across reference genomes using the GenomicRanges package in R. Additionally, we evaluated the genic and intergenic composition

of outlier windows based on annotations from each reference genome. Next, we used SnpEff35 to assess the functional impact of

variants within outlier windows by building custom annotation databases for each reference genome using its corresponding

gene annotations. We annotated variants in the VCF files separately for each reference, classifying mutations as synonymous or

non-synonymous based on their predicted coding effects.

Converting coordinates between reference genomes

We performed whole genome alignments between the two heterospecific genomes and the gray fox genome using minimap236 v2.14

with parameters –cs -x asm20. We converted the pairwise alignment format computed by minimap2 to a chain file using paf2chain,37

then used the Crossmap38 v0.7.0 bed command to convert SNP positions and the region command, with the default (-r) value of 0.85

for the minimum ratio of bases that must remap, to convert window positions in the heterospecific genomes to their corresponding

positions in the gray fox genome.
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Supplemental figures

Figure S1. Sampling locations of genomes, related to Figure 1

(A) Sampling localities of WGS data for n = 41 gray foxes obtained from Kosugi et al.,1 with gold borders highlighting high-coverage samples.

(B) Principal components 1 and 2 of genome-wide variation among individuals. In both panels, black and gray points represent the 12 samples included in our

analysis, and the pink points represent the excluded samples, which include admixed individuals.
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Figure S2. Demographic trajectories using different datasets and methods, related to Figure 2

(A) Demographic trajectories using matched SNP sets across reference genomes. Inferred effective population sizes (y axis) over time in years from present (x

axis) for eastern and western populations using Arctic fox and CanFam4 reference genomes. Black lines: trajectories based on heterospecific genomes using

only lifted-over SNPs (invariant sites and unmapped sites masked). Brown lines: trajectories based on gray fox genome using only SNPs that successfully lifted

over to the respective heterospecific genome. Gold lines: trajectories based on gray fox genome with randomly downsampled SNPs matching the number of

variants that lifted over from each heterospecific genome.

(B and C) Demographic trajectories across reference genomes. Inferred effective population sizes (y axis) and years from present (x axis) reveal discordant

demographic histories of foxes resolved using the species-matched (gold) and heterospecific genomes (red and blue) in the east (left) and the west (right) using (B)

MSMC2 and (C) stairway plot.
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Figure S3. Reference genome choice affects recombination rate inference and hotspot detection, related to Figure 3

(A) Reference genome choice influences recombination hotspot detection. Scatterplots comparing recombination rates in 50-kb windows between gray fox and

heterospecific references for eastern (left) and western (right) populations. Recombination hotspots unique to the arctic fox (blue, top), Canfam4 (red, bottom),

and gray fox (gold) are highlighted. Hotspots shared between the two references are shown in black, and the remaining windows are in gray. The limited overlap in

hotspots across references, with heterospecific references identifying substantially more unique hotspots in the western population but fewer in the eastern

population compared with the conspecific gray fox reference, demonstrates that reference genome selection critically affects inferred recombination

landscapes.

(B) Mean recombination rates for syntenic vs. non-syntenic chromosomes between reference genomes. Recombination rates vary more across references than

between syntenic and non-syntenic regions.
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Figure S4. Reference genome choice affects functional annotation and interpretation of FST outliers, related to Figures 4 and 5

(A) Top 10 unique GO biological process terms identified for each reference genome, highlighting distinct thematic focuses. The unique terms with the highest

combined scores are shown for arctic fox (blue), Canfam4 (red), and gray fox (yellow). Each term is listed alongside its GO identifier, with the combined score on

the x axis calculated as the log(p value) multiplied by the Z score.

(B and C) Functional context of FST outliers by reference genome.

(B) Genic (top) and intergenic (bottom) content of outlier windows based on annotations for the three references, with shared outliers (present in both the het-

erospecific and conspecific genomes) shown in black, outliers unique to gray fox shown in gold, and outliers unique to Arctic fox or Canfam4 shown in purple.

Genic regions are consistently overrepresented in outliers across all references, with the highest enrichment in gray fox-specific outliers, while intergenic regions

show variable representation depending on genome annotation.

(C) Number of non-synonymous (pink) and synonymous (red) mutations in outlier windows based on each reference. Heterospecific references show nearly twice

as many synonymous as non-synonymous mutations, while the conspecific gray fox reference shows the opposite pattern, likely reflecting differences in gene

models rather than variant detection, as total mutation counts remain similar across references.
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(legend on next page)

ll
Article



Figure S5. Dot plot of pairwise whole-genome alignments, related to Figure 1

Plots are between the gray fox genome (x axis) and the heterospecific reference genomes (y axis, top) Canfam4 and the Arctic fox (y axis, bottom) showing

synteny is not conserved, with evidence of chromosomal fusions and fissions.
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